趣味の投資とプログラミング備忘録

趣味の投資と独学の「R言語」によるプログラミングを混ぜて、なぜ投資が必要なのか、メモがてら書いていきたいと思います。投資もプログラミングも初心者という方の勉強の一助となれば幸いです。

SBI-SBI・V・全米株式、実際に投資してみた!2022.5月分

目次

 

  1. 免責事項 : 記事を見る前に確認を!
  2. 導入 : なぜ始めたのか?
  3. 方法 : どうやって結果を求めるか?
  4. 結果
    1. Fig.1 : シミュレーション区間&実データ推移
    2. Fig.2 : シミュレーション結果&実データ表
    3. Fig.3 : 理論騰落率と実騰落率(月毎)
    4. Fig.4 : 当月積立シミュレーション分布と評価価額
    5. Fig.5 : 20年積立投資シミュレーション推移
    6. Fig.6 : 20年積立投資シミュレーションの分布
    7. Fig.7 : 20年積立投資シミュレーション表
  5. 考察

免責事項


当ブログに掲載する情報は投資勧誘を目的としたものではありません。株式などの金融商品の取引は損失を出す恐れがあります。
全て自己判断、自己責任での投資をお願いいたします。
このブログは投稿者が趣味として記載しているものであり、いかなる損失が出た場合でも責任を負うことはできません。
誤情報が入り込んだり、情報が古くなったりすることもあります。
必ずしも正確性を保証するものではありません。また合法性や安全性なども保証いたしません。
当ブログに掲載された内容によって生じた損害等の一切の責任を負いかねますので、ご了承ください。

導入


どうも、花森ヒロシです
ちょうど統計解析や視覚化に特化しているプログラミング言語の『R言語』をかじる機会に恵まれ、面白いなと思い、「これを使って何かシミュレーションをしてみたいな」と思ったのがまず第一のきっかけでした。

第二のきっかけは、趣味の投資で暴落時に不安になり売ってしまうなどの判断ミスをしないようにしていきたいと思ったことがあります。
なので、実際に私が利用させてもらっている投資信託の成績と過去運用成績から導いた平均・標準偏差から『R言語』を用いてモンテカルロシミュレーションを行い、得られたデータから実際の運用中成績と比較して予測ができているか確認することで、判断材料にできればと思いました。

そして、プログラミング言語に触れているとHTMLやCSSで書いてみるのも面白そうだと感じたので、せっかくならブログを書いてみたいと思ったので今に至ります(笑)
長くなりましたが、以上を導入とさせてもらいます。

方法


米国の上場投資信託VTIのデータをGoogleスプレッドシートGoogle Finance関数を使って抽出。 (使用データ 2001-06-01~2021-07-30)

月末の日付と終値だけのデータを「R」で抽出してデータフレームを作成。 月末の終値から、前月比率(n=241)を算出し計算に用いる。
算出方法やそもそもモンテカルロシミュレーションしても差し支えないのか正規性をみなければならないのですが、以下の当ブログで以前に検証というていで記事にさせてもらってますので見て頂ければと思います。何かありましたらご指摘をいただければと思います。
以前の検証記事↓
【株式や投資信託が正規分布に従うのは本当か?VTIで検証してみた!(リターンは当該期間の終値比算出)】

Rを使って、毎月の実際の投資額を読み込み、月末に投資したとして、算出した平均リターン、平均標準偏差から正規乱数を生成、毎月、乱数を加味して翌月も乱数を加味、実際に投資した経過月数分を5000回シミュレーションを行い、得られたデータを並べ、上から2.5%、25%、50%、75%、97.5%の地点でのデータと投資しなかった場合の貯金の累積額、時価評価額の描画する。経時データとして表も作成する。
また、最新月における成績のシミュレーション分布と実データの位置をヒストグラムにより描画する。

結果

 

Fig.1

Fig.1の説明 Fig.1 は、VTIの過去時系列データから算出した平均リターン7.16279%、年間標準偏差15.26225%の正規乱数により変動を発生させ、実データのある期間分を5000回シミュレーションをした結果から、パーセンタイルを算出し併記したもの。縦軸の金額は$、横軸の経過月数は投資開始時を0として経過した月数を表す。Q975は97.5パーセンタイル、Q75は75パーセンタイル、Q50は50パーセンタイル、Q25は25パーセンタイル、Q025は2.5パーセンタイル、投資累計額は投資開始時点からの最新月までの合計投資額、時価評価額は当該月の時価評価、投資成績をそれぞれ表す。


Fig.2

シミュレーション結果&実データ表
金額単位:$
経過月数 時価評価額 投資累計額 Q025 Q25 Q50 Q75 Q975
0 1945.766 1912.593 1912.593 1912.593 1912.593 1912.593 1912.593
1 3793.726 3733.755 3570.844 3687.019 3745.705 3801.099 3906.063
2 5607.712 5540.061 5203.657 5446.485 5575.093 5700.620 5933.995
3 33051.454 32778.441 32253.704 32635.576 32837.368 33044.205 33457.167
4 43780.831 43070.780 40508.416 42339.286 43339.059 44370.230 46141.783
5 45486.319 43957.718 39785.855 42770.218 44415.716 46108.264 49344.821
6 43827.489 44847.403 39594.048 43418.931 45558.302 47791.772 51747.108
7 44110.533 45722.295 39631.204 44079.062 46572.747 49180.539 54209.175
8 43054.292 46548.478 39910.855 44749.055 47576.779 50640.322 56460.156
9 42238.414 47324.744 40204.569 45512.497 48637.515 52072.347 58373.912
10 42840.042 48102.280 40237.540 46238.899 49716.285 53299.995 60591.755

Fig.2の説明

Fig.2 は Fig.1 のデータを数値化したもの。実際の時価総額とシミュレーション結果から算出したパーセンタイル値を併記した時系列データ。



Fig.3

Fig.3の説明 Fig.3、2007-03-15 ~2021-07-30のデータから算出した平均リターン(μ)、平均リスク(σ)を月間値に直したものから理論変動幅として算出しています。幅は月間平均μ±(σ,2σ,3σ)の範囲をそれぞれ緑色の濃さで表しています。 一番濃いσ区間に約68%、2番目に濃い2σ区間に約95%、3番目に濃い3σ区間に約99%のデータが過去のデータではその区間に入っていたため、過去データ通りであれば今後も毎月そのような確率で入ると想定されます。投資した期間における実際の前月比での変動を青線で表しています。

Fig.4

Fig.4の説明 Fig.4は過去データから算出した平均リターンとリスクから当月までのモンテカルロシミュレーションをした結果と当月実際の評価価額を重ねたもの。



Fig.5

Fig.5の説明 Fig.5、グラフの『%』はパーセンタイル値を意味する。実際に投資している月額の金額までを各月に投資してから、以降の期間は積立をやめて20年が経過した場合の金額推移を5000回シミュレーションしたもの。


Fig.6

Fig.6の説明 Fig.6は実際に投資している月額の金額までを各月に投資してから、以降の期間は積立をやめて20年が経過した場合の金額推移を5000回シミュレーションしたもので、図はその20年後の最終成績の分布を意味する。


Fig.7

シミュレーション結果(中長期ターゲット)
金額単位:$
経過月数 投資累計額 95% 90% 80% 70% 60% 50% 40%
0 1912.593 1912.593 1912.593 1912.593 1912.593 1912.593 1912.593 1912.593
12 48102.280 41018.868 42795.993 45223.313 46959.286 48577.710 50163.784 51877.144
24 48102.280 38429.510 41345.707 45072.955 47823.526 50629.016 53356.110 56064.568
36 48102.280 37258.663 40945.974 45797.737 49698.278 53205.770 56797.596 60330.876
48 48102.280 36929.427 40921.381 46687.236 51500.711 55878.224 59825.325 64187.873
60 48102.280 36805.866 41558.261 48282.117 53415.832 58231.114 63225.501 69060.613
72 48102.280 36350.414 42004.236 49304.382 55520.806 61643.129 67219.261 73371.411
84 48102.280 36844.770 42922.634 51137.650 57864.930 64042.763 70765.700 78825.556
96 48102.280 38067.188 43688.563 52977.221 60540.877 67960.991 75332.695 83781.525
108 48102.280 37785.106 44740.225 54663.407 63781.609 71842.611 80606.864 89697.469
120 48102.280 38354.090 45989.011 56731.032 66706.840 76209.483 85523.166 96341.799
132 48102.280 38958.027 47616.888 59048.257 69894.362 80154.251 90276.313 102018.987
144 48102.280 39256.594 48962.580 61764.866 72963.541 84172.715 95666.549 108375.357
156 48102.280 40697.470 49905.897 63508.002 76392.057 88680.874 101374.160 116774.802
168 48102.280 41172.182 51638.018 66203.545 79798.612 92277.791 106893.417 122872.754
180 48102.280 42373.311 52880.770 69292.972 82493.808 97219.266 113213.480 131289.492
192 48102.280 43808.161 54557.818 71765.908 86895.473 101957.570 118841.671 138661.266
204 48102.280 45296.379 57608.708 75177.969 90583.100 107887.344 124885.163 146554.004
216 48102.280 46596.322 59246.498 77947.871 95556.001 112900.262 132673.502 154998.664
228 48102.280 48162.028 62206.955 82190.376 100426.393 119626.255 140810.084 165092.615
240 48102.280 49417.386 64219.535 85164.814 105560.664 125954.387 150065.110 174909.563

Fig.7の説明 Fig.7は、実際に投資している月額の金額までを各月に投資してから、以降の期間は積立をやめて20年が経過した場合の金額推移を5000回シミュレーションしたもの。その4シミュレーションから、どの程度の確率で投資金額が変動しうるか、また、その変動した結果の確率をみるもの。
例1)表の95%とはシミュレーション結果の5パーセンタイル値で95%の確率で20年後の結果が49417.3857$以上

例2)50%とはシミュレーション結果の50パーセンタイル値で50%の確率で20年後の結果が150065.1098$以上

考察


この運用データは実際はVTIではなく、特定口座でSBI-SBI・VTIを運用しているのですが、目標のインデックスは同じなので、使用してます。
為替変動が大きいせいか、シミュレーション範囲内に収まらなくなる可能性が高いため、購入時期のドル/円を調べて円から$に変換しました。
そして、正確に月末に投資しているわけではないので、誤差もあります。また、毎月でシミュレーションしていますが、実際は実営業日に毎回乱数発生させるべきなのでしょうが、やるのが面倒なので、あまり変わらないだろうと想定してシミュレーションしている関係で誤差も多々あるかもしれないものの、おおよそ同じだろうと考えておきます。


現在は 10ヶ月で-5262.2384941$(-10.9396861%)となってます。

またもや下落しましたね。続落です。いつまで下がるんでしょうね?
集計日のドル円から換算すると、時価評価額5,515,227円(+31,163円)ですね。

下落はしましたが、いままでのところ、Fig.1、Fig.2のシミュレーション結果の範囲からみると基本的に2.5%~97.5%内に収まっています。

Fig.3の騰落率では、基本的には過去データから算出した平均と標準偏差より約99%の過去データが3σ区間に入っていたわけですが、実際に今回のデータもその範囲内に入っているようです。まだ期間が短いのでそうなるのも納得ではあるんですが、とりあえず今のところ過去データの範疇のようです。

Fig.4では、シミュレーション結果から確率密度分布からも考えられるように、当月の評価価額は山の中腹あたりに来てますね。

ただ、それでもFig.5からもわかるように長期間投資を行うことで、今後また盛り返せると思われます。定期預金よりは良いはずなので、例え一時的に下がっていてもそれでもいいわけです。

Fig6から形成された分布やFig.7の数値化した表でも元本割れの可能性は著しく低いだろうと考えられます。上位では1億円を超える場合も想定される点は夢がありますね。

米国株式は変動はあれども200年ほど右肩上がりなので、もしも50パーセンタイル値より下がった時があれば、追加で投資するのを繰り返すと、資本主義が滅びない限りはこのシミュレーションの結果よりも良くなるだろうと思われます。なので、そろそろ追加入金したい衝動に駆られていますが、追加弾頭が足りないのと、まだ下がりそうなので、少し待ってたらまた上がってきましたね。タイミングって難しいですね。
落ちるナイフは掴まないことが重要ですし、だましで上がっていてすぐにまた下落するかもしれないことを考えたらどのタイミングでも購入できません(笑)
さらには円安も進んでいることもまた躊躇する理由にもなりました。結果として高掴みがほとんどになるという。。。やっぱりドルコスト平均てそういう感情的投資阻害をさせないので、良いんでしょうね。
まあ、追加資金を投入しようにも、そもそも余裕資金を全部ぶち込んでいたので追加しようもなかったんですけどね。

フルインベストは右肩上がりなら最適解かもしれません。しかし、未来はわからないので、生活防衛費を除いた余裕資金を一定割合で持っておくこともまた重要ですね。

今後に期待します。

以上。