趣味の投資とプログラミング備忘録

趣味の投資と独学の「R言語」によるプログラミングを混ぜて、なぜ投資が必要なのか、メモがてら書いていきたいと思います。投資もプログラミングも初心者という方の勉強の一助となれば幸いです。

セゾン資産形成の達人ファンド実際に投資してみた!2024年12月

目次

 

  1. 免責事項 : 記事を見る前に確認を!
  2. 導入 : なぜ始めたのか?
  3. 方法 : どうやって結果を求めるか?
  4. 結果
    1. Fig.1 : シミュレーション区間&実データ推移
    2. Fig.2 : シミュレーション結果&実データ表
    3. Fig.3 : 理論騰落率と実騰落率(月毎)
    4. Fig.4 : 当月積立シミュレーション分布と評価価額
    5. Fig.5 : 40年定額積立投資シミュレーション推移
    6. Fig.6 : 40年後の定額積立シミュレーションの分布
    7. Fig.7 : 40年定額積立投資シミュレーション表
  5. 考察

免責事項


当ブログに掲載する情報は投資勧誘を目的としたものではありません。株式などの金融商品の取引は損失を出す恐れがあります。
全て自己判断、自己責任での投資をお願いいたします。
このブログは投稿者が趣味として記載しているものであり、いかなる損失が出た場合でも責任を負うことはできません。
誤情報が入り込んだり、情報が古くなったりすることもあります。
必ずしも正確性を保証するものではありません。また合法性や安全性なども保証いたしません。
当ブログに掲載された内容によって生じた損害等の一切の責任を負いかねますので、ご了承ください。

導入


どうも、花森ヒロシです
ちょうど統計解析や視覚化に特化しているプログラミング言語の『R言語』をかじる機会に恵まれ、面白いなと思い、「これを使って何かシミュレーションをしてみたいな」と思ったのがまず第一のきっかけでした。

第二のきっかけは、趣味の投資で暴落時に不安になり売ってしまうなどの判断ミスをしないようにしていきたいと思ったことがあります。
なので、実際に私が利用させてもらっている投資信託の成績と過去運用成績から導いた平均・標準偏差から『R言語』を用いてモンテカルロシミュレーションを行い、得られたデータから実際の運用中成績と比較して予測ができているか確認することで、判断材料にできればと思いました。

そして、プログラミング言語に触れているとHTMLやCSSで書いてみるのも面白そうだと感じたので、せっかくならブログを書いてみたいと思ったので今に至ります(笑)
長くなりましたが、以上を導入とさせてもらいます。

方法


セゾン投信の投資の達人の過去基準価額csvデータをダウンロードして使用できる形に調整する。 (使用データ 2007-03-15 ~2021-07-30)
月末の日付と終値だけのデータを「R」で処理してデータフレームを作成、 そこから年間の平均リターン、年間標準偏差を算出する。

算出方法やそもそもモンテカルロシミュレーションしても差し支えないのか正規性をみなければならないのですが、以下の当ブログで以前に検証というていで記事にさせてもらってますので見て頂ければと思います。何かありましたらご指摘をいただければと思います。
以前の検証記事↓
株式や投資信託が正規分布に従うのは本当か?セゾン資産形成の達人ファンドで検証してみた!(リターンは当該期間の終値比算出)

Rを使って、毎月の実際の投資額を読み込み、月末に投資したとして、算出した平均リターン、平均標準偏差から正規乱数を生成、毎月、乱数を加味して翌月も乱数を加味、実際に投資した経過月数分を20000回モンテカルロシミュレーションを行い、得られたデータを並べて上から2.5%、25%、50%、75%、97.5%の地点でのデータと投資しなかった場合の貯金の累積額、時価評価額の描画する。経時データとして分布や表も作成する。
また、最新月における成績のシミュレーション分布と実データの位置をヒストグラムにより描画する。
なお、上記のモンテカルロシミュレーションがどの程度妥当だろうかと思い、同じ方法で別期間の過去のデータを用いてテストも行っています記事にもしてますので確認がしたい方はどうぞ。
あくまで短期間のシミュレーションかつ評価も視的にしか比較していませんが、おおよそ予測できていると思われます。
セゾン投信資産形成の達人の過去データから未来予測してみた!(モンテカルロシミュレーションとバックテスト)

結果

 

Fig.1

Fig.1の説明 Fig.1 は、セゾン投信の約13年のデータから算出した平均リターン8.07252%、年間標準偏差18.15158%の正規乱数により変動を発生させ、実際に投資した期間まで毎月の実投資額で20000回シミュレーションをした結果から、パーセンタイルを算出し併記したも。縦軸の金額は$、横軸の経過月数は投資開始時を0として経過した月数を表す。Q975は97.5パーセンタイル、Q75は75パーセンタイル、Q50は50パーセンタイル、Q25は25パーセンタイル、Q025は2.5パーセンタイル、投資累計額は投資開始時点からの最新月までの合計投資額、時価評価額は当該月の時価評価、投資成績のようなものをそれぞれ表す。


Fig.2

シミュレーション結果&実データ表
金額単位:万円
経過月数 時価評価額 投資累計額 Q025 Q25 Q50 Q75 Q975
36 250.2476 191.94 151.7441 187.4794 210.1801 236.3737 298.2574
37 251.3988 201.94 160.5712 197.7370 221.2360 248.7533 313.1939
38 278.3553 211.94 168.3698 207.7135 232.6225 261.4534 330.0560
39 294.5051 221.94 177.0388 217.8049 243.8506 274.4057 346.0613
40 300.7440 231.94 184.4965 227.2668 255.1375 286.8936 363.6122
41 292.7770 241.94 192.5647 237.2928 266.2978 300.4438 380.6053
42 310.1596 251.94 200.2799 247.1126 277.8003 313.4752 397.2819
43 328.2236 260.34 206.9592 255.7694 287.8010 325.4434 415.0277
44 327.8477 260.65 204.7328 256.2600 289.7900 329.3894 422.5314
45 343.0325 261.95 203.5306 257.9040 292.8608 334.4811 430.2998

Fig.2の説明

Fig.2 は Fig.1 のデータを数値化したもの。実際の時価総額とシミュレーション結果から算出したパーセンタイル値を併記した時系列データ。



Fig.3

Fig.3の説明 Fig.3、2007-03-15 ~2021-07-30のデータから算出した平均リターン(μ)、平均リスク(σ)を月間値に直したものから理論変動幅として算出しています。幅は月間平均μ±(σ,2σ,3σ)の範囲をそれぞれ緑色の濃さで表しています。 一番濃いσ区間に約68%、2番目に濃い2σ区間に約95%、3番目に濃い3σ区間に約99%のデータが過去のデータではその区間に入っていたため、過去データ通りであれば今後も毎月そのような確率で入ると想定されます。投資した期間における実際の前月比での変動を青線で表しています。赤線はプラスマイナス0%の位置を示しています。

Fig.4

Fig.4の説明 Fig.4は過去データから算出した平均リターンとリスクから当月までのモンテカルロシミュレーションをした結果と当月実際の評価価額を重ねたもの。



Fig.5

Fig.5の説明 Fig.5、グラフの『%』はパーセンタイル値を意味する。実際に投資した金額を元に40年間ホールドし続けた場合を20000回シミュレーションしたもの。実際の投資額とは異なる。


Fig.6

Fig.6の説明 Fig.6は40年後のシミュレーション最終成績の分布。


Fig.7

40年定額積立投資シミュレーション表
金額単位:万円
経過月数 投資累計額 95% 90% 80% 70% 60% 50% 40%
12 60.35 52.9358 54.8354 57.2877 59.1161 60.7030 62.1772 63.8120
60 261.95 201.1592 222.2825 251.4283 275.3923 296.3516 318.4398 341.6026
120 261.95 193.2463 231.6392 286.6583 334.6516 380.5669 433.4556 490.6498
180 261.95 205.7647 260.1225 343.0777 420.6791 498.5746 587.9006 692.2563
240 261.95 228.4702 302.2320 422.0033 536.5424 653.9110 796.4499 966.4600
300 261.95 265.2994 363.7326 526.7625 696.5172 873.3188 1086.3031 1350.6732
360 261.95 308.9930 437.1036 668.8737 907.1710 1172.1867 1494.0305 1899.1327
420 261.95 370.1340 544.0771 843.4255 1174.0131 1549.9081 2012.4464 2620.4696
480 261.95 433.4133 663.1029 1087.0984 1539.6768 2089.0889 2745.0278 3652.1102

Fig.7の説明 Fig.7は積立をし続けた金額までで、投資を開始してから40年のシミュレーション最終成績から、どの程度の確率で投資金額が変動したか、また、その変動した結果の確率をみるもの。
例1)表の95%とはシミュレーション結果の5パーセンタイル値で95%の確率で40年後の結果が433.4133万円以上

例2)50%とはシミュレーション結果の50パーセンタイル値で50%の確率で40年後の結果が2745.0278万円以上


考察


特定口座でセゾン資産形成の達人を運用しているのですが、アクティブファンドです。
ただ、正確には月末に投資しているわけではないので、誤差もあります。また、毎月でシミュレーションしていますが、実際は実営業日に毎回乱数発生させるべきなのでしょうが、やるのが面倒なのと、あまり変わらないだろうと想定してシミュレーションしている関係で誤差も多々あるかもしれないですが・・・まあ、おおよそ同じだろうと考えておきます。

現在は45ヶ月で81.0825万円( +30.9534262%)となってます。


いままでのところ、Fig.1、Fig.2のモンテカルロシミュレーション結果の範囲からみると中央値から75パーセンタイル付近ですね。だいぶ上がったようです。

Fig.3を見ると、基本的には過去データから算出した平均と標準偏差より約99%の過去データが3σ区間に入っていたわけですが、実際に、今回のデータもその範囲内に入っているようです。まだ期間が短いのでそうなるのも納得ではあるんですが、とりあえず今のところ過去データの範疇のようです。現在は赤線(前月比プラスマイナス0%)を上回っているため、前月の評価価額と比較した時、プラスとなっています。

Fig.4では、シミュレーション結果から確率密度分布からも考えられるように、当月の評価価額は山のてっぺん付近に来てますね。確率分布的には出現しやすい位置にいるという感じですね。

Fig.5から、40年後のシミュレーション結果は下位5%(95%の確率)でも元本である投資累計額を上回っている。ただし、注意が必要なのは、40年後も同じリターン、リスクである保証がないという点だろう。

Fig6から、形成された分布から考えると、元本割れの可能性は著しく低いだろうと考えられます。
Fig.7から、40年後のシミュレーション結果は95%の確率で433.4133万円以上になっているということです。増加率は+165.4564993%と下位5%にしては増えています。 50%の確率で2745.0278万円以上になっているということです。
増加率は+1047.9205192%と中央値ではかなり増えています。今投資をやめてもホールドし続けていれば50%の確率の部分を見るかぎりは、それなりに老後資産の足しになりそうです。

アクティブという点は信託報酬が高額という点や、インデックスに忠実でないということにもデメリットがあるかもしれませんが、あえて選んでます。

少なくとも、国債や定期預金よりは良いはずです。



とはいえ、未来のシミュレーションはいいですけど、下落すればメンタル的にはあまり良いものではないですね(笑)
救いは、あまり変動が大きくない事、でしょうか。下落はしたとしても、米国市場単体よりは円安の影響もあるとは思いますが、下落してない印象です。
世界全体投資だからなのか、コロナや戦争等の影響で下がるのは当然とも言えます。そう考えるとシミュレーション範囲下限を下回っていないのは凄いとも思えてきます。一億総株主時代に突入するかは不明ですが、方向としては良い傾向なのではないかと私は考えていますが、というのも、市場に資金が潤沢で流動性もあれば、投資しているお金は育つ速度は上がりそうな気がしているからです。実際はどうなのかはわかりませんがね。

今後もシミュレーション通り(範囲の上目で!)になると良いなと、期待します。

以上。