趣味の投資とプログラミング備忘録

趣味の投資と独学の「R言語」によるプログラミングを混ぜて、なぜ投資が必要なのか、メモがてら書いていきたいと思います。投資もプログラミングも初心者という方の勉強の一助となれば幸いです。

SBI-SBI・V・SP500、実際に投資してみた!2023年4月分

目次

 

  1. 免責事項 : 記事を見る前に確認を!
  2. 導入 : なぜ始めたのか?
  3. 方法 : どうやって結果を求めるか?
  4. 結果
    1. Fig.1 : シミュレーション区間&実データ推移
    2. Fig.2 : シミュレーション結果&実データ表
    3. Fig.3 : 理論騰落率と実騰落率(月毎)
    4. Fig.4 : 最新月(当月)の積立シミュレーション分布と評価価額
    5. Fig.5 : 40年積立投資シミュレーション推移
    6. Fig.6 : 40年積立投資シミュレーション分布
    7. Fig.7 : 40年積立投資シミュレーション表
  5. 考察

免責事項


当ブログに掲載する情報は投資勧誘を目的としたものではありません。株式などの金融商品の取引は損失を出す恐れがあります。
全て自己判断、自己責任での投資をお願いいたします。
このブログは投稿者が趣味として記載しているものであり、いかなる損失が出た場合でも責任を負うことはできません。
誤情報が入り込んだり、情報が古くなったりすることもあります。
必ずしも正確性を保証するものではありません。また合法性や安全性なども保証いたしません。
当ブログに掲載された内容によって生じた損害等の一切の責任を負いかねますので、ご了承ください。

導入


どうも、花森ヒロシです
ちょうど統計解析や視覚化に特化しているプログラミング言語の『R言語』をかじる機会に恵まれ、面白いなと思い、「これを使って何かシミュレーションをしてみたいな」と思ったのがまず第一のきっかけでした。

第二のきっかけは、趣味の投資で暴落時に不安になり売ってしまうなどの判断ミスをしないようにしていきたいと思ったことがあります。
なので、実際に私が利用させてもらっている投資信託の成績と過去運用成績から導いた平均・標準偏差から『R言語』を用いてモンテカルロシミュレーションを行い、得られたデータから実際の運用中成績と比較して予測ができているか確認することで、判断材料にできればと思いました。

そして、プログラミング言語に触れているとHTMLやCSSで書いてみるのも面白そうだと感じたので、せっかくならブログを書いてみたいと思ったので今に至ります(笑)
長くなりましたが、以上を導入とさせてもらいます。

方法


米国のSP500連動の上場投資信託SPYのデータをGoogleスプレッドシートGoogle Finance関数を使って抽出。 (使用データ 1993-01-29 ~2021-08-27 )
月末の日付と終値だけのデータを「R」で抽出してデータフレームを作成。 月末の終値から、前月比率(n=343)を算出し計算に用いる。

算出方法やそもそもモンテカルロシミュレーションしても差し支えないのか正規性をみなければならないのですが、以下の当ブログで以前に検証というていで記事にさせてもらってますので見て頂ければと思います。何かありましたらご指摘をいただければと思います。
以前の検証記事↓
株式や投資信託が正規分布に従うのは本当か?SPYで検証してみた!(リターンは当該期間の終値比算出)
Rを使って、毎月の実際の投資額をドル換算にして読み込み、月末に投資したとして、算出した平均リターン、平均標準偏差から正規乱数を生成、毎月、乱数を加味して翌月も乱数を加味、実際に投資した経過月数分を5000回シミュレーションを行い得られたデータを並べ、上から2.5%、25%、50%、75%、97.5%の地点でのデータと投資しなかった場合の貯金の累積額、時価評価額の描画する。経時データとして表も作成する。
また、最新月における成績のシミュレーション分布と実データの位置をヒストグラムにより描画する。
なお、上記のモンテカルロシミュレーションがどの程度妥当だろうかと思い、同じ方法で別期間の過去のデータを用いてテストも行っています記事にもしてますので確認がしたい方はどうぞ。
あくまで短期間のシミュレーションかつ評価も視的にしか比較していませんが、おおよそ予測できていると思われます。
以前の検証記事↓
米国ETF SPY過去データから未来予測してみた!(モンテカルロシミュレーションとバックテスト)

結果

 

Fig.1

Fig.1の説明 Fig.1 は、SPYの約30年のデータから算出した平均リターン8.481591%、年間標準偏差14.5878%の正規乱数により変動を発生させ、実データのある期間分を投資額を投資日時でドル換算して5000回シミュレーションをした結果から、パーセンタイルを算出し併記したもの。縦軸の金額は$、横軸の経過月数は投資開始時を0として経過した月数を表す。Q975は97.5パーセンタイル、Q75は75パーセンタイル、Q50は50パーセンタイル、Q25は25パーセンタイル、Q025は2.5パーセンタイル、投資累計額は投資開始時点からの最新月までの合計投資額、時価評価額は当該月の時価評価、投資成績をそれぞれ表す。


Fig.2

シミュレーション結果&実データ表
金額単位:$
経過月数 時価評価額 投資累計額 Q025 Q25 Q50 Q75 Q975
0 3884.153 3874.467 3874.467 3874.467 3874.467 3874.467 3874.467
1 3935.804 4227.925 3937.036 4142.962 4254.692 4364.069 4578.381
2 4597.485 4537.552 4133.692 4420.063 4583.905 4742.192 5067.855
3 5176.893 4835.655 4348.200 4701.036 4911.718 5122.320 5543.316
4 5765.394 5139.299 4566.697 4987.840 5247.613 5490.824 6041.069
5 6006.485 5439.845 4792.838 5293.865 5575.728 5860.287 6511.930
6 6479.667 5736.875 5022.698 5585.498 5901.100 6238.183 6963.871
7 6628.651 6037.695 5240.074 5890.441 6244.590 6624.513 7420.335
8 7428.756 6338.187 5445.592 6185.162 6589.557 7000.891 7860.055
9 7679.396 6635.484 5674.030 6496.083 6924.395 7374.242 8335.276
10 8424.963 7503.598 6496.891 7349.360 7823.948 8352.455 9363.919
11 9208.561 7504.480 6443.087 7354.276 7876.957 8458.474 9604.805
12 9067.291 7505.351 6320.239 7364.018 7920.039 8562.701 9796.803
13 11700.589 11012.473 9778.135 10880.306 11493.421 12170.216 13529.568
14 11628.338 11013.345 9691.697 10875.963 11582.463 12313.944 13927.885
15 11776.265 11014.164 9607.398 10833.766 11636.398 12465.881 14124.111
16 10791.378 11014.934 9531.465 10830.070 11694.271 12612.446 14483.342
17 11048.367 11015.709 9372.076 10820.443 11767.669 12767.267 14794.502
18 10385.937 11016.446 9299.050 10847.120 11854.529 12901.073 15104.632
19 11242.523 11017.211 9181.545 10880.089 11929.745 13026.798 15355.743
20 10533.842 11017.925 9135.615 10893.854 11986.733 13165.460 15701.790
21 10187.362 11018.618 9039.486 10923.877 12063.871 13279.691 16009.034
22 9974.563 11019.293 8982.148 10951.201 12129.207 13412.571 16366.644
23 10794.329 11020.011 8984.541 10981.889 12199.270 13549.279 16736.702
24 10606.109 11020.757 8907.928 11033.305 12268.674 13695.503 16907.412
25 14261.436 14130.361 12020.534 14176.017 15436.629 16910.941 20287.694
26 13749.692 14131.094 11881.946 14229.533 15504.951 17070.914 20638.213
27 14529.648 14131.856 11815.961 14219.595 15593.957 17246.483 20873.347
28 14343.544 14132.603 11732.920 14254.237 15711.802 17451.393 21414.517

Fig.2の説明

Fig.2 は Fig.1 のデータを数値化したもの。実際の時価総額とシミュレーション結果から算出したパーセンタイル値を併記した時系列データ。



Fig.3

Fig.3の説明 Fig.3、2007-03-15 ~2021-07-30のデータから算出した平均リターン(μ)、平均リスク(σ)を月間値に直したものから理論変動幅として算出しています。幅は月間平均μ±(σ,2σ,3σ)の範囲をそれぞれ緑色の濃さで表しています。 一番濃いσ区間に約68%、2番目に濃い2σ区間に約95%、3番目に濃い3σ区間に約99%のデータが過去のデータではその区間に入っていたため、過去データ通りであれば今後も毎月そのような確率で入ると想定されます。投資した期間における実際の前月比での変動を青線で表しています。赤線はプラスマイナス0%の位置を示しています。

Fig.4

Fig.4の説明 Fig.4は過去データから算出した平均リターンとリスクから当月までのモンテカルロシミュレーションをした結果と当月実際の評価価額を重ねたもの。



Fig.5

Fig.5の説明 Fig.5、グラフの『%』はパーセンタイル値を意味する。実際に投資している月額の金額までを各月に投資してから、以降の期間は積立をやめて40年が経過した場合の金額推移を5000回シミュレーションしたもの。


Fig.6

Fig.6の説明 Fig.6は40年後のシミュレーション最終成績の分布。


Fig.7

40年積立投資シミュレーション表
金額単位:$
経過月数 投資累計額 95% 90% 80% 70% 60% 50% 40%
12 7505.351 6613.741 6888.078 7247.226 7526.141 7751.944 7980.529 8217.449
60 14132.603 12031.268 13399.402 15235.700 16714.451 18033.721 19378.242 20803.939
120 14132.603 13422.774 15732.898 19248.362 22070.942 24644.783 27416.438 30637.711
180 14132.603 16181.606 19605.770 24965.730 29460.448 34116.377 39140.455 44834.715
240 14132.603 19570.428 24754.347 33127.484 40539.024 48057.350 56511.699 65146.919
300 14132.603 24023.105 32017.842 43556.932 55240.121 65985.229 79542.738 95467.270
360 14132.603 31831.819 42106.653 59854.640 75623.429 93360.290 114219.181 139279.521
420 14132.603 39875.573 54954.846 80015.271 104626.415 131865.926 162521.949 200609.992
480 14132.603 51649.640 73570.140 109995.037 143911.273 184023.712 231423.128 291820.189

Fig.7の説明 Fig.7は、実際に投資している月額の金額までを各月に投資してから、以降の期間は積立をやめて20年が経過した場合の金額推移を5000回シミュレーションしたもの。そのシミュレーションから、どの程度の確率で投資金額が変動しうるか、また、その変動した結果の確率をみるもの。
例1)表の95%とはシミュレーション結果の5パーセンタイル値で95%の確率で40年後の結果が51649.6396$以上

例2)50%とはシミュレーション結果の50パーセンタイル値で50%の確率で40年後の結果が231423.1281$以上


考察


この運用データは実際はSPYではなく、つみたてNISA口座でSBI-SBI・S&P500を運用しているのですが、目標のインデックスは同じなので、使用してます。
今までのデータは円ベースで行っていたのですが、為替変動でシミュレーション範囲内に収まっていないなと感じたので、購入時期のドル/円を調べて円から$に変換しました。
そして、正確に月末に投資しているわけではないので、誤差もあります。また、毎月でシミュレーションしていますが、実際は実営業日に毎回乱数発生させるべきなのでしょうが、やるのが面倒なので、あまり変わらないだろうと想定してシミュレーションしている関係で誤差も多々あるかもしれないものの、おおよそ同じだろうと考えておきます。


現在は 28ヶ月で+210.9403869$(+1.4925798%)となってます。

ちょっと復活ですね。
集計日のドル円から換算すると、時価評価額1,919,453円(+320,253円)ですね。 投資開始の2020年12月からどんどん上昇し75パーセンタイル値を超える位置を推移していたので、1993-01-29 ~2021-08-27 のデータから考えると良い成績を誇っていたように思います。

また、今月も円安もまだ続いていますね。130円を超えた状態になっています。円ベースで見た場合の資産を一時的に押し上げています。ドルベースでみるのが正解なのでしょうけど、円で見ると気分は楽ですね。 ただ、下がったとしても下がった分を上回るということは過去データによるシミュレーション結果が示しています。あくまで過去データ通りの変動幅であれば、ですが・・・

繰り返しになりますが、いままでのところ、Fig.1、Fig.2のシミュレーション結果の範囲からみると基本的に2.5%~97.5%内に収まっています。下落は精神的に良くはないですけどね。

Fig.3の騰落率では、基本的には過去データから算出した平均と標準偏差より約99%の過去データが3σ区間に入っていたわけですが、実際に今回のデータもその範囲内に入っているようです。まだ期間が短いのでそうなるのも納得ではあるんですが、とりあえず今のところ過去データの範疇のようです。現在は赤線(前月比プラスマイナス0%)を上回っているため、前月の評価価額と比較した時、プラスにはなっています。

Fig.4では、シミュレーション結果から確率密度分布からも考えられるように、当月の評価価額は山のてっぺん付近に来てますね。確率分布的にみても出現頻度は高そうな位置ですね。(長期で行うと中央値付近が出やすいか?)

Fig.5から、40年後のシミュレーション結果は下位5%(95%の確率)でも元本である投資累計額を上回っている。ただし、注意が必要なのは、40年後も同じリターン、リスクである保証がないという点だろう。

Fig6から形成された分布やFig.7の数値化した表でも元本割れの可能性は著しく低いだろうと考えられます。上位では1億円を超える場合も想定される点は夢がありますね。

長期でのシミュレーション結果では40年後には95%の確率で元本を大きく上回る4倍弱程度と出ています。定期預金よりは良いはずなので、それでもいいわけです。
米国株式は変動はあれども200年ほど右肩上がりなので、上を向いて歩こうと思います。

いまのところ、圧倒的に国債や定期預金よりは良いです。為替の影響は無視しますが、長期投資ならば一括の方がいいだろうという理論からつみたてNISAは一括でいれましたが・・・その直後下落しましたね。
入れたタイミングが最高値くらいだったのでタイミングは最悪と言えましょう。しかしながら、これもまた長期投資では良いことだと考えておきます。
株価の上がって下がっては当然、起こります。 ただ、いついつに下落するとか、今後このあたりで下落するだろう、など、普通はわからないのですからね(わかる場合もあるにはあるけど・・・)。長期投資においては、世界滅亡レベルのことがないなら関係ないかなって思います。米国利上げや日本の大規模金融緩和継続、中国上海コロナ対策、ロシア関連の問題が懸念材料ですが、そのうち収束するでしょう。

はい、というわけで、資本主義と確率を信じて、今後に期待します。
以上。